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Abstract— Device to Device communication enables the deploy-
ment of mobile cloudlets in LTE-advanced networks. The distrib-
uted nature of mobile users and dynamic task arrivals makes
it challenging to schedule tasks fairly among multiple devices.
Leveraging the idea of software defined networking, we propose a
software defined cooperative offloading model (SDCOM), where
the SDCOM controller is deployed at the PDN gateway and
schedules tasks in a centralized manner to save the energy
of mobile devices and reduce the traffic on access links. We
formulate the minimum-energy task scheduling problem as a
0-1 knapsack problem and prove its NP-hardness. To compute
the optimal solution as a benchmark, we design the conditioned
optimal algorithm based on the aggregated analysis of energy
consumption. The greedy algorithm with a polynominal-time
complexity is proposed to solve large-scale problems efficiently.
To address the problem without predicting future information
on task arrivals, we further design an online task scheduling
algorithm (OTS). It can minimize the energy consumption
arbitrarily close to the optimal solution by appropriately setting
the tradeoff coefficient. Moreover, we extend OTS to design a
proportional fair online task scheduling algorithm to achieve the
fair energy consumption among mobile devices. Extensive trace-
based simulations demonstrate the effectiveness of SDCOM for
a variety of typical mobile devices and applications.

Index Terms— Software defined networking, mobile cloudlet,
energy-efficiency, offloading.

I. INTRODUCTION

MOBILE applications are witnessing rapid develop-
ments, calling for enhanced storage and computational

capacity on mobile devices. However, the capacity of a
mobile device is fundamentally limited by its physical size.
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A series of recent offloading solutions [1], [2], MAUI [3]
and Clonecloud [4] aim to augment the capacities of mobile
devices. Offloading tasks to a remote cloud through cellular
networks is costly [1] due to the lower bandwidth, higher
WAN (Wide Area Network) latency and higher energy con-
sumption [5]. Moreover, the growth rate of current cellular
system capacity cannot catch up with the demand of mobile
data traffic, such as online video streaming and multimedia
file sharing [6]. Limiting the traffic usage of access links is
becoming a major concern of network operators [7].

To address these challenges, mobile cloudlet [8] was pro-
posed. A group of nearby mobile devices are connected
wirelessly, e.g., using WiFi or Bluetooth. Mobile devices
can be providers as well as clients of computing service.
Potential application scenarios of mobile cloudlet include mul-
timedia sharing at an event, location information acquisition
and language translation for a group of tourists. Device to
Device (D2D) communication is specified by 3GPP in LTE-
Advanced, which brings mobile cloudlet to reality. However,
due to the distributed nature of mobile users and dynamic task
arrivals, effectively scheduling tasks to appropriate devices and
the cloud remains a challenging network-wide optimization
problem. Such optimization should further ensure energy fair-
ness among mobile devices in the process of cooperation.

The recent Software Defined Networking (SDN)
paradigm ([9]–[11]) enables logically centralized control
over the distributed information among mobile devices [12].
Leveraging SDN, we design a Software Defined Cooperative
Offloading Model (SDCOM) for mobile cloudlets. An
SDCOM Controller deployed at the LTE Gateway periodically
collects information of mobile devices, forming a global
view of network states. It schedules tasks for every mobile
device based on energy consumption and external traffic
usage (traffic departing local D2D network). Mobile devices
can execute tasks locally, cooperate with other devices or
offload tasks to the cloud in accordance with the decision of
the SDCOM Controller. We can use fingerprints proposed in
[13], [14] or the hash indexes derived from the input of tasks
to describe the similarity of tasks. Mobile devices can share
computation results of tasks with each other to eliminate
redundancy in computation and external traffic usage.

We formulate such task scheduling as a 0-1 knapsack
problem, and prove its NP-hardness. The scheduling aims to
minimize the energy consumption of mobile devices under the
external traffic constraint from the perspective of the entire
network. To compute the optimal solution as a benchmark,
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we design an offline algorithm, the Conditioned Optimal
Algorithm (COA), by approaching the optimization as a set
covering problem. Our offline solution is optimal when com-
putation dominates offloading in energy consumption. Due to
its exponential time complexity, COA is practical only for
a moderate number of task types. We further propose an
efficient approximation algorithm, the Energy-saving Greedy
Algorithm (EGA), which has a polynomial-time complexity
and achieves a good performance to the optimal solution.

The offline algorithms require full knowledge of all tasks,
and therefore are sensitive to the accurate prediction of future
tasks (task type, time of occurrence, etc.). We further design a
traffic queuing mechanism based on the external traffic usage
to encourage cooperation between mobile devices and solve
the task scheduling problem in the online setting. The traffic
queuing mechanism employs a traffic queue to record the
amount of offloading services that each device has already
received. It can indicate the gap between received and offered
offloading services. A device can reduce its queue backlog
by providing services for others. If the traffic queue (i.e., the
queue backlog) is larger than a threshold, then the mobile
device cannot offload more tasks to other devices.

Based on the proposed traffic queuing mechanism and Lya-
punov optimization [15], we design an Online Task Schedul-
ing Algorithm (OTS) to address the problem without pre-
dicting future tasks. OTS aims to minimize network-wide
long-term average energy consumption while stabilizing the
traffic queues of all devices in the LTE-Advanced network.
It can not only minimize the energy consumption arbitrarily
close to the optimal solution, but can also enable a flexible
tradeoff between the energy consumption and external traffic
usage by adjusting a tradeoff coefficient. Moreover, we extend
OTS to design a Proportional Fair Online Task Scheduling
Algorithm (PF-OTS) based on the concept of Relative Energy
Consumption. It not only exhibits similar performance to OTS,
but also ensures the fairness of energy consumption among
mobile devices, such that the energy efficiency of one device
will not hurt the energy performance of others. We conduct
extensive trace-based simulations to show the effectiveness of
SDCOM under various network conditions.

II. RELATED WORK

The existing research efforts on offloading in wireless
networks and mobile cloud computing can be divided into
two categories: computation offloading and traffic offloading.

Computation Offloading: The concept of Cyber Forag-
ing [16] was proposed in 2001 with the aim of augment-
ing the computing capability of mobile devices, offloading
computation tasks of mobile devices to static idle computers
for remote execution. In recent years, with the emergence of
Mobile Cloud Computing (MCC), several similar solutions
have been proposed. MAUI [3] and ThinkAir [17] provide
method-level computation offloading, and do not require spe-
cial support from the operating system. However, they still
need the programmer to access the source code and partition
the application manually. Clonecloud [4] and Cloudlets [18]
use virtual machines to establish execution environment for

mobile devices on the cloud or a nearby device that is rich
in resource. SociableSense [19] shows how society related
applications can benefit from cloud offloading. COMET [20]
allows threads to be migrated to other machines without mod-
ification of the program code. These schemes focus on how
to partition tasks statically or dynamically, realizing method-
level or application-level migration, and when to offload appli-
cations from the single device perspective. Some other works
[21]–[25] focus on evaluating the feasibility and cost of com-
putation offloading in terms of bandwidth, energy consumption
of CPU and network interfaces on the device.

Furthermore, in order to overcome the high access latencies
of cloud services through cellular networks and to mitigate
traffic pressure on cellular networks, mobile cloudlet [8] is
proposed, following a peer-to-peer model for Mobile Cloud
Computing. In mobile cloudlet, a group of nearby mobile
devices connected wirelessly can execute tasks cooperatively.
Mobile devices can be computing service providers as well
as clients of the service. Li et al. investigate the impact of
cloudlet size, cloudlet node’s lifetime and reachable time on
the feasibility and performance of mobile cloudlet [8]. They
derive upper and lower bounds on computing capacity and
computing speed for users to decide whether to offload tasks
to remote clouds or local mobile cloudlets for better mobile
application services.

However, the research on optimal policies for scheduling
multiple tasks is limited. How to gather the distributed infor-
mation of mobile devices and schedule tasks to appropriate
devices or to the cloud are the main challenges in designing the
mobile cloudlet model. Departing from existing solutions, our
schemes not only focus on minimizing the energy consumption
of mobile devices, but also aim to guarantee the energy fairness
of mobile devices in the process of cooperation and reduce the
traffic volume at access links.

Traffic Offloading: A number of proposals were put forward
towards the challenges of explosive cellular network traffic.
Lee et al. suggest that in certain metropolitan areas, some
of the mobile traffic has already been offloaded to WiFi [6].
Ha et al. present the architecture and implementation of a time-
dependent pricing system, which aims to manage the growing
demand on cellular networks via dynamic pricing [26]. Wif-
fler [27] designs a model to predict WiFi connectivity, and uses
these predictions to offload delay-tolerable data to WiFi. Zhuo
et al. consider utilizing WiFi and delay tolerant networks for
offloading traffic of cellular networks, and provide an incentive
framework to motivate users to leverage their delay tolerance
for cellular traffic offloading [28].

These previous studies focus on offloading mobile traffic
to WiFi. With the advent of D2D communication, our sight
turns to offloading mobile traffic through D2D since cellular
networks have larger coverage and work at licensed band
that can guarantee a high QoS service compared with other
wireless networks. It is rather typical for a cellular user to stay
within a single coverage zone throughout a communication
session. Habak et al. consider using a collection of co-located
devices to provide a dynamic mobile cloud [29]. Xie et al.
take advantage of energy efficient cooperative communication
to minimize the total power consumption of the system while
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Fig. 1. An overview of SDCOM.

guaranteeing transmission reliability [30]. Chen et al. design
a streaming system to enable nearby mobile users to share
downloaded data [31]. It can reduce the usage of cellular links
and avoid redundant transmissions of cellular networks. These
findings indicate burgeoning attempt of D2D communication
and D2D-based offloading.

However, the cooperative issues between multiple users
need to be addressed. Extending these methods, we design
SDCOM, which enables mobile devices to execute tasks
cooperatively and share the results with each other. It can
not only save the energy consumption of mobile devices by
eliminating the computation redundancy, but can also reduce
the external traffic usage of access links caused by accessing
cloud services. To the best of our knowledge, this paper is the
first to solve the task scheduling problem by leveraging the
idea of SDN framework in the mobile cloudlet scenario.

III. PROBLEM FORMULATION AND MODELING

In this section, we overview the scenario of SDCOM, then
define the scheduling problem and prove its NP-hardness.

A. Scenario Description

SDCOM resides in the LTE-Advanced network, as shown
in Fig. 1. SDCOM Controller is arranged on the PDN Gate-
way, and provides data management services. A centralized
control is realized by deploying small cell agents at each
Serving Gateway and communicating with the Controller like
traditional SDN. We utilize the DC-OC [32] (direct D2D
communication with operator controlled link establishment) as
the mode for device to device communication. The connection
is established between these two devices with the help of
the controller and data between devices is then transmitted
directly. In SDCOM, the control plane is completely decoupled
from the data plane, as though it were a centralized application,
rather than a distributed system. The Controller knows the
global network conditions and records profiles of every mobile
device. Because of the limited storage capacity, the SDCOM
Controller does not store the results of tasks, but stores the
fingerprints [13] of tasks recently executed. The Controller
has a Device Information Table and a Task Information Table.

The Device Information Table records profiles of mobile
devices in the network, e.g., the residual energy (remaining
battery capacity), the CPU clock frequency, the interface band-
width. The CPU frequency, as a constant profile, is reported
once only upon UE registration in the network. The Task

Information Table records the task information, e.g., which
devices have executed the task and cached the result, the
fingerprint derived from the task. In a LTE network, a UE
periodically sends the measurement report to the serving BS in
a heartbeat style [33]. Task information and device information
except the CPU frequency are periodically reported along with
the measurement report. Then the BS integrates multiple users’
heartbeats together and periodically transmits to the Controller
in bursts. Besides, variable profiles are also updated when the
UE makes a request. Based on the information in these tables,
SDCOM Controller schedules tasks to the appropriate provider
(another local device or the cloud) by solving an optimization
problem in a discrete time manner.

SDCOM operation includes the following phases. A device
who has a task to execute sends a request to the BS; then BS
forwards the corresponding request to the SDCOM Controller.
The Controller updates all its information tables, discovers
whether there are available peers who have already executed
the same task, and then executes a task scheduling algorithm.
According to the solution, the Controller assigns the task to the
appropriate provider. Since the size of the offloading request is
very small, we can ignore the energy consumption of sending
the request to SDCOM Controller. The transmission delay
from the device to the Controller is a few milliseconds, which
is shorter than the transmission delay on the Internet by one
or two orders of magnitude.

Since tasks generated by different mobile users may be
similar (for example, querying the same keyword through a
search engine or requesting the same video), devices can share
computation results with each other to achieve higher perfor-
mance and lower energy consumption. If a task generated by
device A has been completed by device B, A can directly
request the result of the task from B. This can reduce the
repetition of computation and network traffic. Intuitively, when
the repetition rate of tasks is high, the proposed model can save
more energy by reducing computation redundancy. When the
repetition rate is low, SDCOM can also improve the network-
wide energy efficiency by offloading tasks to the cloud.

B. Notation

Assume there are n devices in the LTE-Advanced network.
They have m tasks to execute over a long time period, denoted
by set C = {C1, C2, · · · , Cm}. Every task is requested by
one of the devices. We use Ci

h to represent task Ch that
belongs to device i, where h = 1, 2, · · · , m. Mobile devices
can execute tasks locally, offload tasks to other devices for
cooperative execution or to the cloud in accordance with
the decision-making of the SDCOM Controller, as shown in
Fig. 2. Energy consumption for executing tasks is defined as
energy consumption of computation. Energy consumption of
offloading tasks to other devices or to the cloud is defined as
energy consumption of offloading.

We further denote the profile of a task who belongs to device
i as Ci

h(Type, Din
h , Dout

h ). Type is the type of task Ci
h, Din

h

is the data size of the input of the task and Dout
h is the data

size of the output of the task. The symbols used in this paper
is summarized in TABLE I.
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Fig. 2. The procedure of offloading.

C. Problem Formulation

1) Energy Consumption of Computation: During task exe-
cution, CPU dominates in energy consumption of a mobile
device. CPU energy consumption depends on the CPU type,
workload, and clock frequency, whose precise characterization
is challenging. Miettinen et al. [34] depict CPU energy con-
sumption from the perspective of computing efficiency: the
amount of computation accomplished with a unit energy (in
cycles per joule). It shows that dynamic voltage and frequency
scaling (DVFS) does affect the energy efficiency of computing
but not radically. The number of CPU cycles depends on the
input size and the Type of a task [21], [34]. We assume that
device i needs Nh CPU cycles to execute computation task
Ci

h. From reference [21] we can derive:

Nh = fX(Din
h ), (1)

where the function fX(·) is determined by the task Type.
For some popular applications, the CPU cycles needed by a

computation task can be expressed as a linear function of the
input data size as Nh = X ·Din

h [34], where the complexity
coefficient X is the ratio of CPU cycles and the input data
size, dependant on the task Type. A table about specific value
of X is given in table II.

While modeling the energy consumption of CPU is an active
area of research and beyond the scope of this paper, we simply
define the computation energy consumption of device j for
executing task Ci

h as,

Ej
C(Ci

h) = Fj(Nh), (2)

where Fj(·) is the function of power coefficient of j’s CPU.
If device j has already executed the task and cached the

result, the energy consumption of j for executing the task
with the same Type again is close to 0. For example, if a
nearby device i requires location information, it can request
j to complete the positioning task Ci

h instead of turning on
the GPS and computing the position by itself. If device j has
the most recent location information, it can send that to i
directly. Hence the energy consumption of computation that j
completes task Ci

h is 0.
2) Energy Consumption of Offloading: The LTE-Advanced

network can be modeled by a directed graph G = (V ,L),
where V and L are the sets of nodes and directed edges,
respectively. Each node i ∈ V corresponds to a device in the

TABLE I

INDEX OF SYMBOLS

network. An edge (i, j) ∈ L in the graph represents a wireless
link from node i to node j. Each edge (i, j) is associated with
three non-negative weights (ρij

T , ρij
R , φij

T ), where ρij
T , ρij

R are
transmitting (resp. receiving) power of i to (resp. from) j,
and φij

T is the transmission rate on link (i, j) at the current
time. The energy consumption of transmission from i to j
can be formulated as ρij

T · (Din
h /φij

T ) [35]. We set ρii
T = 0

and φii
T = ∞. We assume that the SDCOM Controller can

collect and store these information at real time. To characterize
the energy consumption of each device in the task offloading
process clearly, we define i as the customer and j as the
provider when device i requests device j to execute a task.

Definition 1: Customer Energy Consumption of Offloading
is the total energy consumption of client i when task Ci

h is
offloaded from customer i to provider j, including transmission
energy consumption of sending input data and receiving output
data of the task, i.e.,

E ij
L (Ci

h) = ρij
T ·

Din
h

φij
T

+ ρij
R ·

Dout
h

φji
T

. (3)
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TABLE II

COMPUTATION TO DATA RATIO FOR VARIOUS TYPE TASKS

Note that E ii
L (Ci

h) = 0, i.e., local execution incurs zero
transmission energy.

Definition 2: Provider Energy Consumption of Offloading
is the sum of transmission and computation energy consump-
tion of provider j when a task Ci

h is offloaded from customer
i to provider j, and the transmission energy consumption
includes transmission energy consumption of receiving input
data and sending output data of the task, i.e.,

E ij
R (Ci

h) = ρji
R ·

Din
h

φij
T

+ ρji
T ·

Dout
h

φji
T

+ Ej
C(Ci

h). (4)

Specifically, when i = j, Equation (4) is consistent with
Equation (2), i.e., E ii

R(Ci
h) = E i

C(Ci
h). Moreover, if provider

j has executed the same task Ci
h and cached the result, the

computation energy consumption can be considered as 0.
In order to measure the network-wide energy consumption

of executing tasks, we define the energy consumption of
offloading, which includes both customer and provider energy
consumption. We consider the cloud as a special provider
denoted as n + 1. The energy consumption of the cloud is
not included in the network-wide energy consumption.

Definition 3: Energy Consumption of Offloading is the
energy consumption of mobile devices when task Ci

h is exe-
cuted remotely, which can be formulated as,

E ij
O (Ci

h) =

{
E ij

L (Ci
h) + E ij

R (Ci
h), j = 1, . . . , n;

E ij
L (Ci

h), j = n + 1.
(5)

D. Traffic-Aware Energy Optimization Problem

In the LTE-Advanced network, the SDCOM Controller
needs to find a proper task allocation scheme, i.e., finding
an optimal provider (another device, the cloud or the device
itself) for every task Ci

h, where Ci
h ∈ C. The task allocation

can be formalized as an optimization problem. The network-
wide energy consumption is the optimization objective, and
the external traffic usage is used as the constraint. Because
the latency of D2D communication is smaller than WAN
latency by two orders of magnitude [18], we ignore the time
constraints in this work.

SDCOM is operated in a discrete time manner. The length
of a slot matches the timescale at which the offloading decision
is made for one task. In each time slot th, SDCOM makes a
decision on a vector �α(Ci

h) = (α1(Ci
h), · · · , αn+1(Ci

h)) as

αj(Ci
h) =

{
1, j executes task Ci

h;
0, otherwise,

where j = 1, 2, · · · , n, n + 1. In particular, we have
αn+1(Ci

h) = 1 when task Ci
h is offloaded to the cloud.

The energy consumption of executing task Ci
h is:

E(Ci
h) =

n+1∑
j=1

αj(Ci
h) · E ij

O (Ci
h). (6)

If Ci
h is offloaded to another device or cloud, the produced

traffic can be expressed as DT (Ci
h) = Din

h + Dout
h . Since

local execution and cooperative execution between devices do
not generate external traffic, the external traffic caused by the
execution of task Ci

h can be computed as

D(Ci
h) = αn+1(Ci

h) ·DT (Ci
h).

The optimization objective is to minimize the Network-
Wide Energy Consumption with the external traffic constraints
(denoted by Ψ), i.e.,

min
m∑

h=1

E(Ci
h) (7)

subject to:
m∑

h=1

D(Ci
h) ≤ Ψ, i = 1, 2, · · · , n, (8)

n+1∑
j=1

αj(Ci
h) = 1, h = 1, 2, · · · , m, (9)

αj(Ci
h) ∈ {0, 1}, h = 1, 2, · · · , m,

j = 1, 2, · · · , n + 1. (10)

Constraints (8) model the external traffic constraint at
the access link. We can control the external traffic usage
proportion by adjusting the coefficient Ψ. Constraints (9)
ensure every request from node i is satisfied by only one
provider. Finally, Constraints (10) enforce the non-negativity
and integrality of the decision variables. With a constraint on
the external traffic, the energy minimization problem in (7) can
be proved NP-hard by a reduction from the knapsack problem.

Theorem 1: Solving the optimization problem presented in
(7) is NP-hard.

Proof: We transform 0-1 knapsack problem which is NP-
hard [36] into our problem (7) as follows. Given a set of m
items denoted by set C = {C1, C2, · · · , Cm} and a knapsack.
Denote the profit and weight of one item as U(Ci

h) and D(Ci
h)

respective. The capacity of the knapsack is Ψ. The problem
is to select a set C to maximize

∑m
h=1 U(Ci

h), satisfying the
capacity constraint

∑m
h=1D(Ci

h) < Ψ. We define the external
traffic caused by the execution of task Ci

h as the weight,
D(Ci

h), and the saved energy as profit, U(Ci
h) = −E(Ci

h). The
0-1 knapsack problem is equivalent to the problem presented
in (7). This completes the proof.

IV. OFFLINE TASK SCHEDULING

There are n devices in the LTE-Advanced network. They
have m tasks to execute in a long time period. In SDCOM,
devices can execute tasks by itself, fetch results from other
devices who have executed the tasks, or offload to other
devices or the cloud. If traversal is directly used to handle
the task scheduling problem, each state has n + 1 successors.
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So the time complexity is O(nm). Since traversal has an
exponential growth on time and memory with the increase of
problem size, comprising between the efficiency and the per-
formance of the offline algorithm design becomes a pragmatic
necessity.

We formulate the task scheduling as a specific set cov-
ering problem, and propose the Conditioned Optimal Algo-
rithm (COA), which can achieve the optimal solution when
the energy consumption of computation is far more than the
energy consumption of offloading. Due to its exponential time
complexity, this method is suitable for a moderate number
of task types. To solve large scale problems efficiently, we
further design an Energy-saving Greedy Algorithm (EGA),
which computes an approximate optimal solution.

A. Conditioned Optimal Algorithm

Note that the scheduling of one Type of tasks does not
affect another Types when external traffic quota is sufficiently
high, thus we can make scheduling decisions separately for
each Type of tasks. Since offline algorithms have access to
complete information including task arrivals and transmission
rates, we can divide the task set C = {C1, C2, · · · , Cm} into
M subsets based on the Type of tasks. Every subset Set(T )
consists all the tasks of the same Type T , and customers of
these tasks form the subset VT ⊆ V .

The energy consumption of computation and transmission
of the cloud is not included in the Network-Wide Energy
Consumption, so offloading tasks to the cloud consumes
less energy than offloading to other devices for execution.
At the same time, obtaining results from other devices is
more efficient than from the cloud. Therefore, if VT can use
the cloud to execute tasks in Set(T ), it must use the cloud
only once for the first instance. Customers of subsequent tasks
can obtain the result from customers who have cached the
result. Deciding which tasks to offload to the cloud under the
constraints of the external traffic is a 0-1 knapsack problem as
shown in Theorem 1. When the number of types is not large,
we can enumerate all possibilities about which tasks should
be offloaded to the cloud for saving more energy according to
the constraints of the external traffic.

If VT does not use the cloud to execute tasks in Set(T ),
it must find one (maybe itself) or more providers to execute
tasks in Set(T ). The problem of finding providers for every
subset Set(T ) can be formulated as a set covering problem
(SCP), which is also NP-hard as shown in Theorem 2.

Theorem 2: Solving the optimization problem presented in
(7) without constraints (8) is NP-hard.

Proof: The set cover problem (SCP) is a classical com-
binatorial optimization problem that is proven NP-hard in
[37]. Given a set of elements U = {1, 2, · · · , m} (called
the universe) and a set S of n sets whose union equals the
universe, SCP is to identify the smallest subset of S whose
union equals the universe.

We transform SCP into our problem presented in Theorem
2 as follows. Given a set of devices denoted by set VT =
{1, 2, · · · , mT } (called the universe). Every device i has a
task CT to be executed. Device i (as customer) can execute

Fig. 3. Performance analysis of offline algorithm. (a) The scheduling
decision. (b) The energy consumption gap.

CT by itself with the Energy Consumption of Computation E i
C ,

or fetch the result of CT from another device j (as provider)
with the Energy Consumption of Offloading E ij

O . Customers
which fetch the result from the same provider j constitute a
set vj ∈ S. Obviously, S’s union equals the universe.

Solving the optimization problem presented in (7) without
constraints (8), is to minimize the total energy consumption of
every device set VT . We select devices with the less Energy
Consumption of Computation Ej

C as providers, which execute
task for themselves, and share result with other devices. For
example, customers in a subset vj = {1, 2, · · · , k} fetch the
result of CT from provider j, and the total energy consumption
can be formulated as Ej = Ej

C +
∑k

i=1 E ij
O .

Because the Energy Consumption of Offloading among
some devices are larger, we cannot select only one provider to
cover the universe. For example, if Ehj

O > Eh
C , selecting other

provider with less energy consumption or executing by itself
will be more energy efficient for device h. Due to the high
cost, we need to select the smallest number of providers to
decrease the Energy Consumption of Computation, i.e., cover
all of the customers with the smallest number of subsets in S.
The set cover problem is equivalent to the problem presented
in Theorem 2. This completes the proof.

However, we can efficiently compute the optimal solution
of the problem in some special cases. The worst case that VT

can select only one provider is shown in Fig. 3. The energy
consumption of offloading task CT is E1

O between device 1
and device i, and Ej

O between device j and device i, where
i ∈ VT . Provider j’s energy consumption of executing task
CT is Ej

C . We set Ej
O < E1

O, but Ej
O + Ej

C > E1
O , Device 1

offloads CT to the cloud and caches the result. Device j does
not cache the result.

As shown in Fig. 3a, device i can fetch the result of CT from
device 1, and the total energy consumption is (mT − 1)E1

O.
However, if (mT − 1)Ej

O + Ej
C < (mT − 1)E1

O, VT can
also offload CT to device j, i.e., VT can find more than
one providers to execute CT . We can show that VT can
find no more than one provider to execute CT if the energy
consumption satisfies the condition below.

Ej
C > (mT − 1)(E1

O − Ej
O), (11)

which means that a subset can select only one provider to
achieve the optimal solution, when the energy consumption
of computation is far more than the energy consumption
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Algorithm 1 Conditioned Optimal Algorithm

Input: {ρT
i1, · · · , ρT

in}, {ρR
i1, · · · , ρR

in}, {φi1, · · · , φin},
{Ci

h(Type, Din
h , Dout

h )}
Output: E, {�α}
1: for all Type T do
2: ET

local ←∞
3: Sorting the tasks in Set(T ) by arriving order, and rename

the task No. to be {1′, 2′, . . . , |Set(T )|′}
4: for j ← 1 to n do
5: ET ← E ij

O (Ci
1′)

6: for h = 2′ → |Set(T )|′ do
7: Selecting provider k∗ with mink∈(1,n) E ik

S (Ci
h)

8: ET ← ET + E ik∗
S (Ci

h)
9: end for

10: if ET
local > ET then

11: ET
local ← ET

12: end if
13: end for
14: ET

cloud ← E i(n+1)
O (C′i

1 )
15: for h = 2′ → |Set(T )|′ do
16: Selecting provider k∗ with mink∈(1,n) E ik

S (Ci
h)

17: ET
cloud ← ET

cloud + E ik∗
S (Ci

h)
18: end for
19: end for
20: Enumerate all possible solutions ET

local, E
T
cloud under the

constraints D < Ψ.
21: Set �α(Set(T )) for all Type T
22: return {�α}

of offloading. Based on the above analysis, we design a
Conditioned Optimal Algorithm (COA), shown in Algo-
rithm 1, which can achieve the optimal solution when the
energy consumption satisfies (11).

In lines 2-12, if the first task of Set(T ) is not offloaded
to the cloud, we enumerate providers to execute the first
task, find the best provider in VT for subsequent tasks in
Set(T ) to fetch the result, and record the minimum energy
consumption with ET

local. The time complexity of this step is
O(|Set(T )| ∗ n2). In lines 13-17, if the first task of Set(T )
is offloaded to the cloud, we select the best provider in VT

for subsequent tasks in Set(T ). The time complexity of this
step is O(|Set(T )| ∗ n). We enumerate all possible solutions
ET

local, E
T
cloud of all Types to find the minimum sum of

energy consumption under the constraints D < Ψ. The time
complexity of this step is O(2M ), where M is the number
of Types. COA can compute the optimal solution, that can
be used as a benchmark to measure performance of other
algorithms. However, due to its exponential time complexity,
this method is suitable only for the case where the number of
Types is not very large.

B. Energy-Saving Greedy Algorithm

To improve efficiency, we further design an Energy-saving
Greedy Algorithm (EGA) in Algorithm 2, working with linear
complexity in the offline setting.

Algorithm 2 Energy-saving Greedy Algorithm

Input: {ρT
i1, · · · , ρT

in}, {ρR
i1, · · · , ρR

in}, {φi1, · · · , φin},
{Ci

h(Type, Din
h , Dout

h )}
Output: E, {�α}
1: Sorting the first tasks of every Set(T ) by non-decreasing

Energy Saving of Unit Traffic Ei
C(Ci

1)−Ei(n+1)
O (Ci

1)

DT (Ci
1)

.
2: Sequentially selecting tasks from the head to offload to the

cloud under the constraints D < Ψ
3: for all Type T do
4: Sorting the tasks in Set(T ) by arriving order, and rename

the task No. to be {1′, 2′, . . . , |Set(T )|′}
5: if C′i

1 is offloaded to the cloud then
6: αn+1(C′i

1 )← 1
7: E = E + E i(n+1)

O (C′i
1 )

8: for h = 2′ → |Set(T )|′ do
9: Selecting provider k∗ with mink∈(1,n) E ik

O (Ci
h)

10: αk∗(Ci
h)← 1

11: E ← E + E ik∗
O (Ci

h)
12: end for
13: else
14: for h = 1′ → |Set(T )|′ do
15: Selecting provider k∗ with mink∈(1,n) E ik

O (Ci
h)

16: αk∗(Ci
h)← 1

17: E ← E + E ik∗
O (Ci

h)
18: end for
19: end if
20: end for
21: return E, {�α}

In line 1, EGA constructs a subset by gathering tasks
of the same Type T together, and sorting tasks in every
subset Set(T ) in chronological order within time complexity
O(|Set(T )| log |Set(T )|). We allocate the first task of every
subset Set(T ) to offload to the cloud according to the con-
straints of the external traffic in line 2. In lines 3-11, we select
the best provider for subsequent tasks of subsets, whose first
instance is offloaded to the cloud. Meanwhile, we record the
scheduling scheme and the value of energy consumption. In
lines 12-19, we select the best provider for tasks of other
subsets. The time complexity of this algorithm is O(m ∗ n).

Compared with the COA, EGA differs in two aspects, which
results in the performance differences. Consider each subset as
a whole, while deciding the provider for the first tasks, EGA
chooses the subsets offloading to the cloud by normalized
energy consumption per unit traffic, which is equivalent to a
greedy solution for 0-1 knapsack problem. The greedy solution
avoids the O(2M ) time complexity of the searching operations,
but leads to some performance loss. Nonetheless, when we
take the subset as a whole, EGA no longer traverses every
possible n provider for the first task of each subset. Instead,
EGA just chooses to offload to the cloud or not, decreases the
time complexity to O(|Set(T )| ∗ n2). The performance loss
depends on the difference between the maximum energy and
minimum energy consumption of local D2D offloading, which
is M ∗ (Emax−Emin). In a network with good signal, Emax

approximately equals Emin and the loss can be ignored.
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TABLE III

TRANSMISSION RATE AND POWER OF DEVICES

V. ONLINE TASK SCHEDULING

The offline algorithms need full knowledge of all tasks,
which may not be available in practice. We further propose
the Online Task Scheduling Algorithm (OTS), which removes
the necessity of future information on task arrivals. Moreover,
we extend OTS to design a Proportional Fair Online Task
Scheduling Algorithm (PF-OTS). It can not only achieve
performance similar to OTS, but also ensure the fairness of
energy consumption of mobile devices.

A. Traffic Queuing

We propose a traffic queuing mechanism to encourage
cooperation between mobile devices and control the usage
of external traffic. Traditional charging policy is that all the
customers pay the bills towards the ISP. Simple applying the
policy, the providers earn nothing but the energy consumption.
Moreover, our BitTorrent-like mechanism has been proved to
possess a Nash equilibrium [38]. Thus the traffic queuing
mechanism is necessary and effective for cooperative offload-
ing. If a device’s queue backlog is larger than a threshold, it is
not allowed to offload more tasks to other devices. A device
can reduce its queue backlog by executing tasks for others.
Each time the D2D connection closes, BS would count the
amount of offloading traffic to update the device’s traffic
queue. In order to offload tasks continually, queue backlogs
of devices cannot increase unboundedly.

We treat the cloud as a special device. It can increase
other devices’ queue backlogs by providing offloading ser-
vices, but cannot consume other devices’ queue backlogs. The
external traffic usage can be reduced if devices offload tasks
to other devices instead of the cloud. To achieve network-
wide (customer devices and provider devices) backlog balance,
we design an asymmetric queuing model according to the
contributions for reducing the external traffic usage.

Definition 4: Traffic Queuing Function. The queue backlog
of customer i will increase by bi(th) = f(DT (Ci

h)), when
customer i has a task Ci

h to execute at time slot th; if Ci
h

is executed by itself, the queue backlog of i will decrease by
di(th) = f(DT (Ci

h)); if Ci
h is offloaded from i to j, the queue

backlog of provider j will decrease by dj(th) = f(DT (Ci
h)).

The increased queue backlog bi(th) (i = 1, · · ·n) is to tackle
the randomness of incoming tasks. If we set f(DT (Ci

h)) =
DT (Ci

h), we can get an informative conclusion. Intuitively,
when task Ci

h is offloaded from i to j, the queue backlog
of device j decreases by dj(th) which is proportional to the
external traffic saved for the network, and the queue backlog
of i increases by bi(th) which is exactly related to the traffic
if the task is offloaded to be executed.

We denote the n devices’ amount of queues at time slot th
as Q(th) � (Q1(th), · · · , Qn(th)), where th is the time slot
at which the task Ci

h is executed. For each device i, Qi(th)
represents its queue backlog at the beginning of time slot th.

The service queues of all devices generated in every time
slot th are denoted as b(th) � (b1(th), · · · , bn(th)), which
are added in their corresponding queues Q(th). Because of
executing tasks for others, devices’ queues are paid partially,
which are denoted as d(th) � (d1(th), · · · , dn(th)). So the
queue backlog evolves according to the following dynamics

Qi(th+1) = max [Qi(th)− di(th) + bi(th), 0], (12)

with an initially empty queue (Qi(t0) = 0).
To bound the queue backlog of every device, we require all

the queues to be stable in the time average sense:

Q = lim sup
m→∞

1
m

m∑
h=1

n∑
i=1

E{|Qi(th)|} <∞. (13)

B. Online Task Scheduling Algorithm

The network-wide average energy consumption of executing
the task set C in a long time period T is:

E = lim sup
m→∞

1
m

m∑
h=1

E{|E(Ci
h)|}. (14)

We obtain a new optimization problem:

min E
subject to: Q <∞

αj(Ci
h) ∈ {0, 1}, h = 1, 2, · · · , m

j = 1, 2, · · · , n + 1
n+1∑
j=1

αj(Ci
h) = 1, h = 1, 2, · · · , m (15)

Let E∗ be the target value of the optimization problem
defined in (15). In each time slot th, SDCOM makes an online
offloading decision, with the objective of minimizing the time
average energy consumption under queue backlog constraints
for all devices. Applying Lyapunov optimization, we define
our Lyapunov function for each slot L(Q(th)) as follow:

L(Q(th)) � 1
2

n∑
i=1

Q2
i (th). (16)

L(Q(th)) can be obtained by adding up squares of the queue
backlog of all devices in the LTE-Advanced network, which is
an effective measure used for vectors like Q(th). A large value
of L(Q(th)) implies that at least one queue backlog is large.
To ensure that the queue backlog of each device is below the
threshold, we need to keep the Lyapunov function small. We
next introduce the Lyapunov drift � (Q(th)):

� (Q(th)) � E{L(Q(th+1))− L(Q(th)) | Q(th)}, (17)

which represents the expected variation of the Lyapunov
function during one time slot. Following the Lyapunov opti-
mization approach [15], we then add the expected energy
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consumption over one time slot to both sides of (17), leading
to the following drift-plus-penalty term.

Definition 5: The Drift-Plus-Penalty is computed as:

DPP (th) =� (Q(th)) + V · E{E(Ci
h) | Q(th)}.

Here V is a non-negative tradeoff coefficient that is chosen
to adjust the performance tradeoff, i.e., how much we care
about the energy consumption compared to the queue backlog.
The key derivation step is to obtain an upper bound on the
drift-plus-penalty. The following lemma establishes such an
upper bound.

Lemma 1: Given any possible queue backlogs Q(th),
arrival rates bi(th) and service rates di(th) at each queue,
under any possible decision �α(th), we have:

DPP(th) ≤ B + V · E{E(Ci
h) | Q(th)}

+
n∑

i=1

E{Qi(th)(bi(th)− di(th)) | Q(th)}. (18)

Proof: Based on equation (12), we can prove an upper-
bound of the Lyapuonv drift,

Q2
i (th+1) ≤ [Qi(th)− di(th) + bi(th)]2.

Moving all the squares of the queue to the left side,
summing all the i together and dividing by 2, taking con-
ditional expectations at both sides, we can obtain the bound
on Lyapunov drift as follows,

� (Q(th)) ≤ E[B(th)|Q(th)]

+
n∑

i=1

Qi(th)E[(bi(th)− di(th))|Q(th)]. (19)

where

B(th) =
1
2

n∑
i=1

[bi(th)2 + di(th)2 − 2bi(th)di(th)].

Because the arrival and service pattern of tasks can be
controlled and adjusted, there must exist some real number
ε > 0 such that the expectation of the difference between
arrivals and services of each queue is smaller than −ε,

E[(bi(th)− di(th))|Q(th)] ≤ −ε, (20)

and we can find a proper finite constant B > 0 such that
the following inequality holds for all the different th and all
possible queue vectors Q(th):

B ≥ E[B(th)|Q(th)].

Adding V · E{E(th) | Q(th)} on both sides of inequality
(19), we can obtain an upper bound as required in (18).

Following the design principle of Lyapunov framework, the
objective of our optimal offloading decision vector �α(Ci

h) is to
minimize the upper bound of the drift-plus-penalty term, i.e.,
we need to minimize the right hand side of (18) in every time
slot th. Since only the terms E(Ci

h) and Qi(th)(bi(th)−di(th))
depend on the decision vector �α(Ci

h), we can minimize the
bound of the right hand side of (18) by minimizing these terms:

DPPbound = V · E(Ci
h) +

n∑
i=1

Qi(th)(bi(th)− di(th)). (21)

Algorithm 3 Online Task Scheduling Algorithm

Input: {ρT
i1, · · · , ρT

in}, {ρR
i1, · · · , ρR

in}, {φi1, · · · , φin},
Ci

h(Din
h , Dout

h ), {Q1(th), · · · , Qn(th)}
Output: {α1(Ci

h), · · · , αn+1(Ci
h)}, {Q1(th+1), · · · ,

Qn(th+1)}
1: Qi(th+1)← Qi(th) + bi(th)
2: for j ← 1 to n + 1 do
3: DPPj ← V · E(Ci

h)
4: for k ← 1 to n do
5: DPPj ← DPPj + Qk(th)(bk(th)− dk(th))
6: end for
7: if DPPj < DPPbound then
8: DPPbound ← DPPj

9: �α(Ci
h)← ej //where ej denotes the vector with a 1 in

the jth coordinate and 0′s elsewhere
10: end if
11: end for
12: j ← the dimension which αj(Ci

h) = 1
13: if j 
= n + 1 then
14: Qj(th+1)← Qj(th)− dj(th)
15: end if
16: return
{α1(Ci

h), · · · , αn+1(Ci
h)}, {Q1(th+1), · · · , Qn(th+1)}

Based on the above lemma, we design the Online Task
Scheduling Algorithm to allocate tasks. When device i
requests the result of a task, the algorithm is triggered. The
queue backlog of i is updated in line 1. Lines 3-6 compute
DPP of every device j according to (21). Lines 7-10 record
the smallest DPPj and determine the offloading decision vec-
tor α(Ch). According to the Lyapunov Optimization Approach,
we will allocate the task to the device with the smallest
DPP value. Since we have computed the DPPbound and
the offloading decision vector before, lines 13-15 update the
queue backlogs of corresponding devices. The algorithm does
not change the queue backlogs when a task is offloaded to the
cloud.

Note that there will be at most two devices related to each
task. When computing DPP of every device j in order to find
the smallest one, we only need to calculate the related DPP ,
i.e., device i and device j. In this way, the time complexity
of OTS is O(n), where n is the number of devices in the
LTE-Advanced network.

C. Performance Analysis

Substituting constants ε, E∗ into inequality (18), and calcu-
lating the time average queue size for every slot th > 0, we
can obtain the performance bounds of OTS:

Theorem 3: Assume the difference between arrivals and
services at each queue satisfies property (20), the time average
energy consumption and queue backlog can be bounded by:

E ≤ E∗ +
B

V
, (22)

Q ≤ B + V E∗
ε

. (23)
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Proof: Since the network can be controlled, there exists
at least one stationary and randomized allocation policy that
can stabilize the queue backlog as follows,

E{E(Ci
h)} = E∗. (24)

By applying (24) and (20) to (18), we obtain:

� (Q(th)) + V · E{E(Ci
h)}

≤ B + V · E∗ − ε ·
n∑

i=1

E{Qi(th)}. (25)

Summing the above inequality over all time slots th, where
h = 0, 1, 2, . . . , m− 1, we get:

m−1∑
h=0

� (Q(th)) + V ·
m−1∑
h=0

E{E(Ci
h)}

≤ m · (B + V · E∗)− ε ·
m−1∑
h=0

n∑
i=1

E{Qi(th)}. (26)

Simplifying (26) with (17), we get:

E{L(Q(tm))− L(Q(t0))}
m · V +

1
m

m−1∑
h=0

E{E(Ci
h)}

≤ B

V
+ E∗ − ε

m · V
m−1∑
h=0

n∑
i=1

E{Qi(th)}. (27)

Since Lyapunov function is non-negative, so is E{Qi(th)}.
Furthermore, as we have defined L(Q(t0)) to be 0, we obtain:

1
m

m−1∑
h=0

E{E(Ci
h)} ≤ B

V
+ E∗. (28)

Let m→∞ in (28):

lim sup
m→∞

1
m

m−1∑
h=0

E{E(Ci
h)} ≤ B

V
+ E∗. (29)

Since the left side of (29) is the definition of E , we
prove (22) as required. By a similar method, we can
prove (23).

Theorem 3 shows that, given a tradeoff coefficient V , the
time average energy deviates by O(1/V ) from optimality at
most, while the queue backlog is bounded by O(V ). A large
V can help the time average energy cost E approach E∗.

D. Extension of Online Task Scheduling

In order to guarantee the fairness of energy consumption
of network-wide mobile devices, we define Relative Energy
Consumption as our optimization objective. According to the
definition of Relative Energy Consumption, if device i is
connected to the external power, the Ri(Ci

h) can tend to
infinity. If terminal i has already executed task Ci

h and stored
the computation result, the E i

C(Ci
h) which it consumes to

execute task Ci
h again is close to 0. In both cases, the Relative

Energy Consumption is close to 0.

Definition 6: Relative Energy Consumption is equal to the
ratio of energy consumption and residual energy of mobile
devices to execute the task Ci

h, which can be formulated as,

Ẽ ij
O (Ci

h) =

⎧⎪⎪⎨
⎪⎪⎩
E ij

L (Ci
h)

Ri(Ci
h)

+
E ij

R (Ci
h)

Rj(Ci
h)

, j = 1, . . . , n;

E ij
L (Ci

h)
Ri(Ci

h)
, j = n + 1,

where Ri(Ci
h) is the residual energy of i at the beginning of

time slot for executing Ci
h.

We substitute Relative Energy Consumption Ẽ(Ci
h) for

Energy Consumption E(Ci
h) in OTS, and propose the

Proportional Fair Online Task Scheduling Algorithm (PF-
OTS), which can ensure the fairness of energy consumption of
mobile devices, i.e., the energy efficiency of one device will
not hurt the energy performance of others. Moreover, we use
Relative Energy Consumption to make scheduling decisions,
which can balance the energy consumption of devices. For
example, if several devices have the result of a task that device
j requires, device j prefers to request the result from the device
with most residual energy available.

VI. PERFORMANCE EVALUATION

We evaluate the performance of SDCOM by simulating the
energy consumption and the external traffic usage. No Offload
(all tasks are executed on the mobile devices locally) and
Cloud Offload (all tasks are executed on the cloud remotely)
are taken as the performance reference for comparison on the
same topology with the same parameter setting.

A. Evaluation Setup and Methodologies

We develop a protocol independent simulator, which can
support self-defined protocols and simulate the decision-
making of SDCOM Controller and interactions between
mobile devices. Our evaluation leverages real traces collected
at border routers of a campus network. We filter the task
requests from the collected hourly traces and calculate the
distribution as the request distribution for different type tasks.
We consider a fully connected LTE-Advanced network with
20 mobile devices, with randomly generated distances among
devices. These devices can communicate with each other and
access the cloud through SDCOM Controller. There are 1000
tasks that belong to these devices to be executed in a long
time period T . These tasks fall into 20 Types, for example,
the location query and the sentence translation. We refer to the
throughput-power model for data transfer over LTE-Advanced
network measured in a recent measurement study [39], as
the standard of the transmission rate on link (i, j) and the
transmission power, as shown in TABLE III. The uplink and
downlink throughput towards the cloud is set to be 2 Mbps
and 9 Mbps respectively.

In practice, a wireless network witnesses not only a normal
operation but also abnormalities such as link failure during
data transfer. When the task results are removed from the
provider’s cache, offloading tasks will fail. These abnormal
situations lead to task reassignments and increase the over-
head. To verify that our algorithms can deal with all the
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Fig. 4. The energy consumption and external traffic with different complexity
coefficient X. (a) The energy consumption. (b) The external traffic.

Fig. 5. The time consumption with different X.

cases effectively, we set the possibility of offloading failure
to 10%. To obtain a reasonable result on average, we run 10
or 20 groups of test in the following evaluation. We use the
mean and the standard deviation to plot an error-bar figure.

In SDCOM, a task can be executed by the device itself
(Local), the cloud (Cloud) or other devices, which may have
executed the same task before (Share), or not (Cooperation).
If the remote execution is not successful, e.g., in a case of
a link failure, the device would choose to execute the task
itself to ensure that the task is dealt with as soon as possible.
Note that the energy consumption of computation is related to
parameter X described in (1) which is decided by the Type of
tasks. Beyond that, the tradeoff coefficient V and the number
of Types will also affect the decision-making.

B. Simulation Results

1) Impact of Complexity Coefficient X: To validate
SDCOM for different types of tasks, we present the energy
consumption, external traffic usage of our algorithms for
different values of X in Fig. 4 and time consumption in Fig. 5.
We vary X from 100 to 3700, which includes most of the
typical cases of mobile applications [34]. Tradeoff coefficients
of OTS and PF-OTS are set to 120 and 107 respectively. Tests
are executed ten times and results are averaged.

The energy consumption of No Offload and Cloud Offload
increases linearly with the increase of X , as shown in
TABLE IV. Moreover, Cloud Offload always consumes
91084Mb network traffic. Apparently in the case of local
execution (No Offload), energy consumption doubles as X
doubles. When X < 1200, No Offload consumes less energy
than Cloud Offload for the same tasks. This indicates that local
execution is more efficient than offloading for data intensive

TABLE IV

ENERGY CONSUMPTION OF NO OFFLOAD AND CLOUD OFFLOAD

tasks (e.g., gzip compression with X = 330), consistent with
the conclusion drawn in [34]. The energy consumption of
Cloud Offload is slightly more than 3.2 times of our algorithms
and is not affected by X .

On the other hand, since our algorithms can select an
appropriate provider for every task according to the application
type and transmission rate, they can always achieve better
performance than No Offload and Cloud Offload. Note that
COA consumes less energy than EGA for the same tasks
when X > 1700, which means that tasks with X > 1700
satisfy (11), i.e., COA can achieve the optimal solution for
computation intensive tasks. Another notable phenomenon is
that the energy consumption of our algorithms rises quickly
when X < 1300 and then increases slowly. Because both
local executing and cooperative executing are more expensive
than caching and sharing the results or cloud offload when
X > 1300, more tasks are executed by the cloud or by sharing
the results and more external traffic are consumed, the energy
consumption of OTS tends to stabilize. Moreover, sharing the
task results is more efficient than cloud execution, thus the
energy consumption of OTS is lower than Cloud Offload.

Furthermore, regardless of the value of X , EGA always
consumes less energy than the two online algorithms OTS and
PF-OTS. For the first task of each type, EGA selects either
local or cloud execution depending on which method has the
lower energy consumption. While for the following tasks, the
optimal provider that has already executed the task is selected.

The time consumption presents a similar trend to the energy.
Time consumption increases linearly with X for Cloud Offload
and No Offload, which always consume much more time
than our strategies. Because our algorithms always choose
an energy efficient offloading method, which take the time
consumption of devices into consideration. For these tasks
which have already been calculated by other devices (available
offloading peers), our algorithms prefer to choose a nearby
peer, because it gets rid of the computation delay. Furthermore,
considering the case where there are no available offloading
peers, our algorithms prefer the cloud offloading more with
X increasing, which is much energy-efficient. Besides, our
strategies EGA, OTS and PF-OTS all overlap, and COA
consumes 20000 less seconds than the three others.

2) Performance of Online Algorithms with Different Trade-
off Coefficient V : We next study how tradeoff coefficient
controls the energy consumption and external traffic usage of
OTS and PF-OTS. We let V increase from 0 to 150 with the
step size 10 for OTS and V increase from 0 to 107 for PF-OTS.

We present the energy consumption, the external traffic
usage and the sum of queue backlog with a specified value
of V for OTS in Fig. 6 and Fig. 7a. A notable observation is
that the energy consumption falls quickly as V increases when
V is small and then decreases slowly. At the same time, the
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Fig. 6. The energy consumption and external traffic with different tradeoff
coefficient V. (a) The energy consumption of OTS. (b) The external traffic of
OTS.

Fig. 7. The task statistics of OTS with different V. (a) The average queue
backlog. (b) The number of tasks executed locally or remotely.

average queue backlog grows linearly with V increasing. This
result confirms the [O(1/V ), O(V )] tradeoff between energy
consumption and queue backlog as captured in (22) and (23).

Energy consumption of online algorithms is similar for dif-
ferent values of X , but the external traffic usage varies widely
because online algorithms can select appropriate providers for
tasks for different X . When the value of X is small, the
energy cost of the local execution is low, therefore tasks are
mostly executed locally, which in turn leads to low traffic
consumption, and vice versa. Users can select the appropriate
V to achieve the best energy-efficiency according to their
budget for external traffic.

The energy consumption changes with V because the num-
ber of tasks executed by the device itself, the cloud, or other
devices are changing with different V . Fig. 7b shows the
number of tasks executed by the device itself, the cloud, or
other devices with different V in our online algorithms. Almost
all the tasks are executed by other devices when V = 0.
With the queue backlog being the only optimization objective,
OTS will select the provider with the longest queue backlog.
As V increases, the number of cooperating tasks decreases
to 0. The cooperation method is most energy-consuming, and
it only happens at special cases where the cloud execution
consumes high energy and the local device has a low energy
consumption. Furthermore, since energy optimization takes a
more important role in the optimization as V increases, the
number of Cloud Execution and Local Fetch tasks increases.
The growth of the Cloud Execution leads to the increase of
the traffic, which is consistent with the result in Fig. 6b, and
the number of Local Fetch reaches the maximum because only
these tasks are repetitive at the same device.

Fig. 8 uses PF-OTS as an example to present the impact of
V and X on energy consumption. As the figure shows, the
energy consumption does vary for different V and X . But we

Fig. 8. The energy consumption with different V and X.

Fig. 9. The energy consumption with different external traffic constraints.

also can see that, for different values of X , when V increases,
the energy consumption exhibits a similar decreasing tendency.
When the tradeoff coefficient V increases from 106 to 107, take
X = 1100 as the example. At first the energy consumption
rapidly falls to 20346 from 44368, then it stabilizes at around
17600. Different X does affect the choice of V , but to a less
radical extent. In this paper, to achieve a good and stable
performance, we choose a relatively large value for V, 107.

3) Energy Consumption with Different External Traffic
Usage: We next study the tradeoff between energy consump-
tion and external traffic usage of our algorithms. We set X =
2500 for these four algorithms. Based on traffic requirements
of algorithms shown in Fig. 4b, we plot Fig. 9 by adjusting the
external traffic usage constraints of the four algorithms from
0Mb to 5000Mb. The figure depicts the energy consumption
of our algorithms, and we can see COA outperforms the other
three because COA searches the optimal provider for each
task type. With the same amount of traffic, EGA consumes
less energy than the two online algorithms, as can be seen in
Fig. 4a. When traffic is above 2000Mb, the energy consump-
tion of these two offline algorithms is no longer decreasing
because the maximum traffic requirement of offline algorithms
is around 2000Mb. Note that the performance of PF-OTS is
similar to that of OTS, and PF-OTS is somehow superior to
OTS. As the traffic volume increases, the energy consumption
of online algorithms exhibits a downward trend all the way.
We can decrease the energy consumption of online algorithms
to approach the offline by loosening traffic constraints.

4) Performance with Different Number of Task Types: We
next set the number of task types to 40, 80, 120 and 160
in order to study the performance of our online algorithms
under different task patterns. Generated patterns depend on
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Fig. 10. The energy consumption and external traffic with different number
of task types. (a) The energy consumption. (b) The external traffic.

the number of types and are distributed according to Zipf
distribution, as observed in real access traces [40]. The k− th
most popular content has pj(fk) = k−α

�
m
i=1 i−α , where α is

the Zipf Distribution Coefficient. A larger Zipf Distribution
Coefficient means more requests of the most popular content,
i.e., the requests of the most popular content occupy a larger
proportion of all requests. We set X = 2500, and V to 120
for OTS and 107 for PF-OTS to run this simulation.

We present the energy consumption of our online algorithms
in Fig. 10a and the external traffic is shown in Fig. 10b.
Increasing the number of task types increases the energy
consumption and traffic. As generated task patterns become
scattered, new types of tasks decrease the probability of the
Collaborative Execution and Local Fetch. Therefore more
tasks are executed either locally or on the cloud.

5) Performance with Constant Parameters: To explore the
effectiveness of our online algorithms further, we examine the
change of energy consumption and the external traffic usage
during the running process with constant parameters. We set
the tradeoff coefficient V to 120 for OTS and 107 for PF-OTS,
X to 1500, the number of types to 20. Fig. 11a depicts the
cumulative energy consumption of the execution of 1000 tasks.
The average queue backlog of mobile devices is presented in
Fig. 11b. At the beginning, there are not many results of tasks
stored by devices. Thus, most tasks are offloaded to the cloud
or calculated locally. The energy consumption of our online
algorithms is increasing almost linearly with the number of
tasks. Meanwhile, the queue backlog increases quickly due
to usage of the Cloud Execution. Later the queue backlog
tends to stabilize and the energy consumption of each task
becomes smaller, since users can share more and more results
of tasks with each other. This reflects the effectiveness of
our online algorithms to the energy conservation and queue
backlog control.

To show the effectiveness of PF-OTS for achieving the
fairness of energy consumption in mobile devices, we sort 20
mobile devices in descending order by initial residual energy,
as shown in Fig. 12, which omits the initial energy curve
for clear display. The initial energy of the 20 mobile devices
follows a uniform distribution over [11000, 30000]J . Note that
in OTS, nearly half of the devices consumed more energy
than PF-OTS. Obviously, PF-OTS can balance the energy
consumption of mobile devices — it consumes more energy
in devices with a higher battery capacity and less energy in
devices with a lower battery capacity.

Fig. 11. The energy consumption and queue backlog over time with constant
parameters. (a) The cumulative energy. (b) The queue backlog.

Fig. 12. The residual energy and consumed energy.

VII. CONCLUSIONS

Towards efficient offloading cooperation among mobile
users, we leverage SDN to design our framework SDCOM,
which aims to save energy of mobile devices and reduce traffic
on LTE-Advanced access links. Based on distributed device
information, a Controller makes task scheduling decisions
periodically. We formulate the minimum-energy task schedul-
ing problem as a 0-1 knapsack problem, and design offline
algorithms to compute the optimal solution as a performance
benchmark. We further propose an Online Task Scheduling
Algorithm for realtime decision making, and extend it into a
Proportional Fair Online Task Scheduling Algorithm. A thor-
ough evaluation of SDCOM demonstrates that our cooperative
offloading models can reduce the energy and traffic dramati-
cally and guarantee the fairness among mobile devices.
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